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Making models smaller without 
reducing their accuracy

u Pruning: legit removing parameters, neurons in the model

u Quantization: clever tricks like bundling weights together or rounding them off 
to save on memory-per-parameter.
u Other weird stuff involving how to store large parameter matrices in memory more 

efficiently

u Knowledge distillation, like training a smaller model to predict the scores of the 
larger
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How to choose 
what to prune?
u Can we just… directly estimate 

how loss will be affected when a 
parameter is set to 0 through the 
power of magical math?







u Can we calculate this?



u The first term is just the loss calculated with current weights across a bunch of test 
samples.

u The second term is harder: we want to be able to calculate this for al parameters p, 
and don’t want to have to evaluate the loss a different time for every sample for every 
p: computationally, that’s a LOT. à Use taylor series to estimate instead!



u This can be 
calculated in 
tensorflow :D



u This is can be calculated in tensorflow :D

u Run this ^^ over a bunch of samples, average the results, and you have an estimate of our 
original goal:

u à Use this to iteratively 1) remove parameters, 2) fine-tune, repeat
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uOptimal brain damage and glorious math did 
WORSE THAN REMOVING RANDOM WEIGHTS!!!

uà What’s going on?
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Prune round 1



à What’s going on?
à Taylor series estimation isn’t perfect, and parameter effects 

aren’t independent.
à In essence, we’re using math to take a HUGE step-size 

during training, i.e. many p_i à 0, and that’s just not a good 
idea. That’s what small step-sizes during training are for!

à As a result, we end up actually selecting for parameters 
that affect the model most, because E(loss-change) is a 
high negative (false). This is why removing random weights 
is better! (in complex, big models, I think)

à Instead, what if we selected for the opposite: parameters 
that barely affect the loss? Instead of E(change-loss), can 
we look at variance(change-loss)?



What does SD(L’’(p)) vs MEAN(L’’(p)) look like?









àNext Steps:
àremove neurons instead of just single weights
àMerge neurons instead of just deleting them
àWe assumed we couldn’t calculate L(p=0) directly 

because of computational problems, but could 
we estimate it in other ways?
à Idea: apply dropout, track which weights / nodes 

are being removed, and then average over many 
samples to estimate what elements are OK to 
remove! Essentially run a regression over the 
resulting accuracy to see which elements have 
high vs low impact.




