
Model Compression:
The OBD-SD Technique
HILLARY

Making models smaller without
reducing their accuracy

u Pruning: legit removing parameters, neurons in the model

u Quantization: clever tricks like bundling weights together or rounding them off
to save on memory-per-parameter.
u Other weird stuff involving how to store large parameter matrices in memory more

efficiently

u Knowledge distillation, like training a smaller model to predict the scores of the
larger

Making models smaller without
reducing their accuracy

u Pruning: legit removing parameters, neurons in the model

u Quantization: clever tricks like bundling weights together or rounding them off
to save on memory-per-parameter.
u Other weird stuff involving how to store large parameter matrices in memory more

efficiently

u Knowledge distillation, like training a smaller model to predict the scores of the
larger

Pruning

Pruning

Fine-tune

How to choose
what to prune?
u Can we just… directly estimate

how loss will be affected when a
parameter is set to 0 through the
power of magical math?

u Can we calculate this?

u The first term is just the loss calculated with current weights across a bunch of test
samples.

u The second term is harder: we want to be able to calculate this for al parameters p,
and don’t want to have to evaluate the loss a different time for every sample for every
p: computationally, that’s a LOT. à Use taylor series to estimate instead!

u This can be
calculated in
tensorflow :D

u This is can be calculated in tensorflow :D

u Run this ^^ over a bunch of samples, average the results, and you have an estimate of our
original goal:

u à Use this to iteratively 1) remove parameters, 2) fine-tune, repeat

Optimal
Brain Damage
Results?!??!?!

Optimal
Brain Damage
Results?!??!?!

uOptimal brain damage and glorious math did
WORSE THAN REMOVING RANDOM WEIGHTS!!!

uà What’s going on?

Prune round 1 … Prune round 17

Prune round 1 … Prune round 17

Prune round 1

à What’s going on?
à Taylor series estimation isn’t perfect, and parameter effects

aren’t independent.
à In essence, we’re using math to take a HUGE step-size

during training, i.e. many p_i à 0, and that’s just not a good
idea. That’s what small step-sizes during training are for!

à As a result, we end up actually selecting for parameters
that affect the model most, because E(loss-change) is a
high negative (false). This is why removing random weights
is better! (in complex, big models, I think)

à Instead, what if we selected for the opposite: parameters
that barely affect the loss? Instead of E(change-loss), can
we look at variance(change-loss)?

What does SD(L’’(p)) vs MEAN(L’’(p)) look like?

àNext Steps:
àremove neurons instead of just single weights
àMerge neurons instead of just deleting them
àWe assumed we couldn’t calculate L(p=0) directly

because of computational problems, but could
we estimate it in other ways?
à Idea: apply dropout, track which weights / nodes

are being removed, and then average over many
samples to estimate what elements are OK to
remove! Essentially run a regression over the
resulting accuracy to see which elements have
high vs low impact.

